Search results for "Transition contribution maps"
showing 3 items of 3 documents
Influence of Au, Ag, and Cu Adatoms on Optical Properties of TiO2 (110) Surface: Predictions from RT-TDDFT Calculations
2022
This study was financially supported by Flag-ERA JTC To2Dox project (S.P.) and M-ERA-NET2 project SunToChem (E.A.K.). M.G.B. thanks the support from the Program for the Foreign Experts (Grant No. W2017011) offered by Chongqing University of Posts and Telecommunications and the National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Exchange (Grant No. DL2021035001L), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141), NCN project 2018/31/B/ST4/00924. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01…
Plasmon Excitations in Mixed Metallic Nanoarrays
2019
Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…
Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications
2021
This research was funded by the Latvian Council of Science grant LZP-2018/2-0083. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union?s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.