Search results for "Transition contribution maps"

showing 3 items of 3 documents

Influence of Au, Ag, and Cu Adatoms on Optical Properties of TiO2 (110) Surface: Predictions from RT-TDDFT Calculations

2022

This study was financially supported by Flag-ERA JTC To2Dox project (S.P.) and M-ERA-NET2 project SunToChem (E.A.K.). M.G.B. thanks the support from the Program for the Foreign Experts (Grant No. W2017011) offered by Chongqing University of Posts and Telecommunications and the National Foreign Experts Program for “Belt and Road Initiative” Innovative Talent Exchange (Grant No. DL2021035001L), Estonian Research Council grant PUT PRG111, European Regional Development Fund (TK141), NCN project 2018/31/B/ST4/00924. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01…

Inorganic ChemistryCondensed Matter::Materials Sciencetime-dependent density functional theoryabsorption spectraphotocatalystGeneral Chemical EngineeringPhysics::Atomic and Molecular ClustersTiO2transition contribution mapsGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]Condensed Matter PhysicsTiO2; photocatalyst; time-dependent density functional theory; absorption spectra; transition contribution mapsCrystals
researchProduct

Plasmon Excitations in Mixed Metallic Nanoarrays

2019

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…

Materials scienceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronoptiset ominaisuudet01 natural sciencesMolecular physicsElectromagnetic radiationHomonuclear moleculeplasmonicsnanorakenteet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusterstransition contribution mapsGeneral Materials ScienceSurface plasmon resonance010306 general physicsPlasmonCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Surface plasmontiheysfunktionaaliteoriaGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)molecular plasmonics021001 nanoscience & nanotechnologytime-dependent density-functional theorytime-dependent density functional theorycollective excitationQuasiparticleDensity functional theory0210 nano-technology
researchProduct

Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications

2021

This research was funded by the Latvian Council of Science grant LZP-2018/2-0083. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union?s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.

NanotubeAnataseMaterials scienceAbsorption spectroscopyabsorption spectraGeneral Chemical Engineering02 engineering and technology7. Clean energy01 natural sciencesTiO2 nanotubeCondensed Matter::Materials Science0103 physical sciencesTime-dependent density functional theoryPhysics::Atomic and Molecular Clusterstransition contribution mapsGeneral Materials ScienceTransition contribution maps010306 general physicsQD1-999TiO<sub>2</sub> nanotubeDopantphotocatalystDopingAbsorption spectraPhotocatalystTime-dependent density functional theory021001 nanoscience & nanotechnologyChemistrytime-dependent density functional theoryChemical physics:NATURAL SCIENCES [Research Subject Categories]Water splittingDensity functional theory0210 nano-technologyNanomaterials
researchProduct